EE 330 Homework 5 Solutions

1. Length of interconnect = 60um

Width of interconnect = 0.6um

No. of squares = 200/2 = 100.

Sheet resistance of interconnect = 23.5 Ω /square

Resistance = $23.5*100 = 2350\Omega$

Capacitance from interconnect to substrate

Capacitance of Poly 1 substrate from the table given = 84aF/um²

Interconnect area = 0.6*60 = 36um²

Capacitance of the substrate= 84 * 10^-18 *36 = 3.024fF

Capacitance between metal and interconnect

Capacitance of Poly and Metal1 from the table given = 56aF/um²

Area of contact between poly and metal = 36um²

Capacitance = 56 * 10^-18 *36 = 2.016fF

2. Length of the interconnect = 300um

Width of interconnect = 2um

No. of squares = 300/2 = 150.

Resistance = 20Ω

Sheet resistance = $20/150 = 0.133 \Omega/\text{square}$

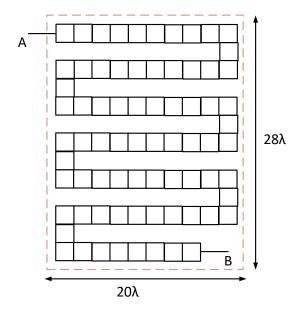
Resistivity of copper = $1.72 * 10^{-8} \Omega m$

Thickness = Resistivity/Resistance = 129.3nm

For Ag =>

Sheet resistance = Resistivity /thickness = 1.59 * 10^-8/ 12.93* 10^-8 = 0.123

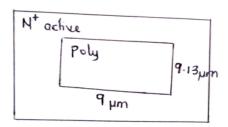
Length = W*R/Rs = 325um


Overlap Cap			
	Overlap Area		Cap
Layers	(µm2)	aF/(μm2)	(af)
Poly-Sub	89.1	84	7484.4
M1- Sub	4.86	27	131.22
M2-sub	15.12	12	181.44
M3-Sub	5.4	3	16.2
M1-Poly	24.3	56	1360.8
M2-Poly	25.92	15	388.8
M3-Poly	12.42	9	111.78
M2-M1	9.72	31	301.32
M3-M1	4.86	13	63.18
M3-M2	6.48	35	226.8
Fringe Cap			
			Cap
Layers	Length (µm)	aF/(μm)	(af)
Poly-Sub	37.8	0	0
M1- Sub	9	49	441
M2-sub	15.6	33	514.8
M3-Sub	9.6	23	220.8
M1-Poly	5.4	59	318.6
M2-Poly	7.2	38	273.6
M3-Poly	3.6	28	100.8
M2-M1	5.4	51	275.4
M3-M1	3.6	34	122.4
M3-M2	7.2	52	374.4

4. Sheet resistance for high resistance poly = $44\Omega \square$

Resistance = 3000Ω

No. of squares = 3000/44 = 68


L = 3W; Let's use a $2\lambda \times 2\lambda$ for one square. The following layout is approximately 68 squares and the bounding rectangle meets the aspect ratio requirements.

Problem 5.

Designing a capacitor using Nt active and Poly 1

$$\Rightarrow$$
 Area = $\frac{200 \times 10^{-15}}{2434 \times 10^{-18}} = 82.17 \mu m^2$

Problem 6

Nominal Value of resistance =
$$\rho$$
. Length ρ From table/calculator relating ρ to resistivity ρ = $22.34 \Omega \cdot cm = 22.34 \times 10^{-2} \Omega m$
 ρ height (thickness) = $0.1 \mu m$
 ρ Area = $0.4 \mu m^2$
 ρ Length = $50 \mu m$

Nominal Value of resistance = $\frac{50}{0.4 \times 10^6} \times 22.34 \times 10^{-2}$

7. Part A:

Begin by calculating the number of squares in each serpentine structure. We can calculate the number of horizontal lines in the serpentine structures as follows:

= 27.925 M_D

$$N_{Horizontal} = \frac{Length_{die}}{Width_{Interconnect} + Width_{Spacing}} = \frac{1cm}{0.2 \mu m} = 50000$$

So we have 50,000 horizontal lines, each 1cm long. This amounts to 5×10^9 squares.

To connect these lines, we have $N_{Horizontal} - 1$ vertical segments, each 0.1μ wide. This amounts to 49,999 squares.

In total, we have $5 \times 10^9 + 49999$ squares per resistor. Each metal layer has a resistivity of $0.12\Omega/sq$, so each resistor has a resistance of $600M\Omega$. When combined in parallel, we have a resistance of $200M\Omega$.

Part B:

Each resistor is only $0.1\mu m$ thick, so each can carry a maximum density of $150\mu A$. Placed in parallel, this means the total resistor can carry up to $450\mu A$.

Part C:

$$P = I^2 R = [450\mu A]^2 [200M\Omega] = 40.5W$$

Problem 8 If the resistance in the interconnect is neglected, it acts as a capacitor in parallel with the input capacitance of the second inventor. $C_{\pm}=(C_{\theta})(W_{\perp})$ a) $R_{\theta}R_{\theta}=2K$ $t_{H_{\perp}}=R_{\theta}R_{\theta}(C_{\perp})$ $C_{\theta}=27af_{H_{\perp}}^{2}$ $C_{\pm}=(6H_{\perp})^{2}(27af_{H_{\perp}}^{2})$ =9.7Af $C_{L}=3fF+9.7aF=3.01FF$ $t_{H_{\perp}}=6.02psec$ b) If L=200H $C_{\pm}=(.6)(200)(27af_{H_{\perp}}^{2}=3.24FF)$ $C_{L}=3fF+3.24fF=6.24fF$ $t_{H_{\perp}}=(2K)(6.24fF)=12.5psec$

c) The only change with poly (again negleting the interconnect resistance) is Cd=84af/u² so C_l =(0.6)(200)84af/u² = 10.1fF so C_l =13.1fF and thus tHL=(2K)(10.1fF)=20.2psec